Difference equation for tracking perturbations in systems of Boolean nested canalyzing functions.

نویسندگان

  • Elena S Dimitrova
  • Oleg I Yordanov
  • Mihaela T Matache
چکیده

This paper studies the spread of perturbations through networks composed of Boolean functions with special canalyzing properties. Canalyzing functions have the property that at least for one value of one of the inputs the output is fixed, irrespective of the values of the other inputs. In this paper the focus is on partially nested canalyzing functions, in which multiple, but not all inputs have this property in a cascading fashion. They naturally describe many relationships in real networks. For example, in a gene regulatory network, the statement "if gene A is expressed, then gene B is not expressed regardless of the states of other genes" implies that A is canalyzing. On the other hand, the additional statement "if gene A is not expressed, and gene C is expressed, then gene B is automatically expressed; otherwise gene B's state is determined by some other type of rule" implies that gene B is expressed by a partially nested canalyzing function with more than two variables, but with two canalyzing variables. In this paper a difference equation model of the probability that a network node's value is affected by an initial perturbation over time is developed, analyzed, and validated numerically. It is shown that the effect of a perturbation decreases towards zero over time if the Boolean functions are canalyzing in sufficiently many variables. The maximum dynamical impact of a perturbation is shown to be comparable to the average impact for a wide range of values of the average sensitivity of the network. Percolation limits are also explored; these are parameter values which generate a transition of the expected perturbation effect to zero as other parameters are varied, so that the initial perturbation does not scale up with the parameters once the percolation limits are reached.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biologically Relevant Classes of Boolean Functions

A large influx of experimental data has prompted the development of innovative computational techniques for modeling and reverse engineering biological networks. While finite dynamical systems, in particular Boolean networks, have gained attention as relevant models of network dynamics, not all Boolean functions reflect the behaviors of real biological systems. In this work, we focus on two cla...

متن کامل

Nested canalyzing depth and network stability.

We introduce the nested canalyzing depth of a function, which measures the extent to which it retains a nested canalyzing structure. We characterize the structure of functions with a given depth and compute the expected activities and sensitivities of the variables. This analysis quantifies how canalyzation leads to higher stability in Boolean networks. It generalizes the notion of nested canal...

متن کامل

Nested Canalyzing, Unate Cascade, and Polynomial Functions.

This paper focuses on the study of certain classes of Boolean functions that have appeared in several different contexts. Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. In the same context, polynomial functions over finite fields have been used to develop network inference methods for gene regulatory networks. Finally...

متن کامل

A Parametrization for Nested Canalyzing Functions Abdul Salam Jarrah, Reinhard Laubenbacher and Blessilda Raposa

Nested canalyzing functions have been studied recently in the context of Boolean network models of gene regulatory networks. This paper provides a parametrization for the class of nested canalyzing functions by the points of an algebraic variety over the field with two elements. This variety is defined by the set of relations that the coefficients of such a function need to satisfy. This set of...

متن کامل

Determining a Singleton Attractor of a Boolean Network with Nested Canalyzing Functions

In this article, we study the problem of finding a singleton attractor for several biologically important subclasses of Boolean networks (BNs). The problem of finding a singleton attractor in a BN is known to be NP-hard in general. For BNs consisting of n nested canalyzing functions, we present an O(1.799(n)) time algorithm. The core part of this development is an O(min(2(k/2) · 2(m/2), 2(k)) ·...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2015